Optimal Transport (OT) provides a useful geometric framework to estimate the permutation matrix under unsupervised cross-lingual word embedding (CLWE) models that pose the alignment task as a Wasserstein-Procrustes problem. However, linear programming algorithms and approximate OT solvers via Sinkhorn for computing the permutation matrix come with a significant computational burden since they scale cubically and quadratically, respectively, in the input size. This makes it slow and infeasible to compute OT distances exactly for a larger input size, resulting in a poor approximation quality of the permutation matrix and subsequently a less robust learned transfer function or mapper. This paper proposes an unsupervised projection-based CLWE model called quantized Wasserstein Procrustes (qWP). qWP relies on a quantization step of both the source and target monolingual embedding space to estimate the permutation matrix given a cheap sampling procedure. This approach substantially improves the approximation quality of empirical OT solvers given fixed computational cost. We demonstrate that qWP achieves state-of-the-art results on the Bilingual lexicon Induction (BLI) task.
translated by 谷歌翻译
图形神经网络(GNN)是专门为图形数据设计的深度学习模型,它们通常依靠节点特征作为第一层的输入。在没有节点功能的图形上应用这种类型的网络时,可以提取基于图的节点特征(例如,度数数)或在训练网络时学习输入节点表示(即嵌入)。训练节点嵌入的后一个方法更有可能导致性能更好,而与嵌入的参数数量与节点数量线性增长。因此,在处理工业规模的图形数据时,以端到端方式以端到端方式训练输入节点嵌入式(GPU)内存中的GNN是不切实际的。受到为自然语言处理(NLP)任务开发的嵌入压缩方法的启发,我们开发了一种节点嵌入压缩方法,其中每个节点都用一个位向量而不是浮点数向量表示。在压缩方法中使用的参数可以与GNN一起训练。我们表明,与替代方案相比,提出的节点嵌入压缩方法的性能优于性能。
translated by 谷歌翻译
图神经网络(GNN)在图形上学习节点表示方面表现出很大的力量。但是,他们可能会从训练数据中继承历史偏见,从而导致预测的歧视性偏见。尽管某些工作已经开发出公平的GNN,但其中大多数直接从非图形域借用了公平代表性学习技术,而没有考虑GNN中特征传播引起的敏感属性泄漏的潜在问题。但是,我们从经验上观察到,特征传播可能会改变以前无害特征与敏感特征的相关性。这可以看作是敏感信息的泄漏,可以进一步加剧预测中的歧视。因此,我们根据特征相关性设计了两个特征掩盖策略,以突出考虑特征传播和相关性变化在减轻歧视中的重要性。通过我们的分析,我们提出了公平视图图神经网络(FAIRVGNN),以通过自动识别和掩盖敏感的相关特征来生成特征的公平视图,以考虑特征传播后的相关变化。鉴于博学的公平视图,我们适应编码器的夹紧权重,以避免使用敏感相关的功能。现实世界数据集的实验表明,Fairvgnn在模型实用程序和公平性之间取得了更好的权衡。我们的代码可在https://github.com/yuwvandy/fairvgnn上公开获取。
translated by 谷歌翻译
今天的网络世界难以多变量。在极端品种中收集的指标需要多变量算法以正确检测异常。然而,基于预测的算法,如被广泛证明的方法,通常在数据集中进行次优或不一致。一个关键的常见问题是他们努力成为一个尺寸适合的,但异常在自然中是独特的。我们提出了一种裁定到这种区别的方法。提出FMUAD - 一种基于预测,多方面,无监督的异常检测框架。FMUAD明确,分别捕获异常类型的签名性状 - 空间变化,时间变化和相关变化 - 与独立模块。然后,模块共同学习最佳特征表示,这是非常灵活和直观的,与类别中的大多数其他模型不同。广泛的实验表明我们的FMUAD框架始终如一地优于其他最先进的预测的异常探测器。
translated by 谷歌翻译
矩阵配置文件是一种有效的数据挖掘工具,可提供时间序列数据的相似关系。矩阵配置文件的用户可以使用相似性连接(即,自行连接)或使用相似性相互作用连接使用另一个时间序列加入时间序列。通过调用或两种类型的连接,矩阵配置文件可以帮助用户在数据中发现保守和异常结构。自从五年前引入矩阵简介以来,已经进行了多项努力,以加快近似联合的计算;然而,大多数这些努力只关注自我连接。在这项工作中,我们表明可以通过创建时间序列的紧凑“字典”表示,有效地使用误差限制保证来执行近似时间序列相似度。使用字典表示而不是原始时间序列,我们能够将异常挖掘系统的吞吐量至少为20倍,基本上没有准确度降低。作为副作用,字典还以语义有意义的方式总结时间序列,可以提供直观和可操作的见解。我们展示了我们的字典的内部序列相似性的实用性,如医学和运输所多样化的域。
translated by 谷歌翻译
Among current anchor-based detectors, a positive anchor box will be intuitively assigned to the object that overlaps it the most. The assigned label to each anchor will directly determine the optimization direction of the corresponding prediction box, including the direction of box regression and category prediction. In our practice of crowded object detection, however, the results show that a positive anchor does not always regress toward the object that overlaps it the most when multiple objects overlap. We name it anchor drift. The anchor drift reflects that the anchor-object matching relation, which is determined by the degree of overlap between anchors and objects, is not always optimal. Conflicts between the fixed matching relation and learned experience in the past training process may cause ambiguous predictions and thus raise the false-positive rate. In this paper, a simple but efficient adaptive two-stage anchor assignment (TSAA) method is proposed. It utilizes the final prediction boxes rather than the fixed anchors to calculate the overlap degree with objects to determine which object to regress for each anchor. The participation of the prediction box makes the anchor-object assignment mechanism adaptive. Extensive experiments are conducted on three classic detectors RetinaNet, Faster-RCNN and YOLOv3 on CrowdHuman and COCO to evaluate the effectiveness of TSAA. The results show that TSAA can significantly improve the detectors' performance without additional computational costs or network structure changes.
translated by 谷歌翻译
最近利用多模式数据旨在建立面部动作单元(AU)检测模型的研究。但是,由于多模式数据的异质性,多模式表示学习成为主要挑战之一。一方面,很难通过仅通过一个特征提取器从多模式中提取相关特征,另一方面,先前的研究并未完全探索多模式融合策略的潜力。例如,早期融合通常需要在推理期间存在所有方式,而晚期融合和中间融合则增加了特征学习的网络大小。与晚期融合的大量工作相反,早期融合探索渠道信息的作品很少。本文提出了一个新型的多模式网络,称为多模式通道混合(MCM),作为一种预训练的模型,以学习强大的表示形式,以促进多模式融合。我们在自动面部动作单元检测的下游任务上评估学习的表示形式。具体而言,它是一个单个流编码器网络,该网络在早期融合中使用频道混合模块,在下游检测任务中仅需要一种模态。我们还利用蒙版的VIT编码器从融合图像中学习特征,并使用两个VIT解码器重建两个模式。我们已经在两个公共数据集(称为BP4D和DISFA)上进行了广泛的实验,以评估所提出的多模式框架的有效性和鲁棒性。结果表明我们的方法是可比或优越的,它与最新的基线方法相当。
translated by 谷歌翻译
在分布式机器学习实践中越来越受欢迎,在分布式机器学习实践中越来越受欢迎,在不共享本地数据的情况下,对算法进行了算法培训的联合学习。通常,图形结构$ g $存在于本地设备以进行通信。在这项工作中,我们考虑使用数据分布和通信异质性以及本地设备的计算能力有限的联合学习中的参数估计。我们通过在本地设备上参数化分布来编码分布异质性,并具有一组不同的$ p $维矢量。然后,我们建议在$ m $估算框架下与融合套索正则化的所有设备共同估计所有设备的参数,从而鼓励对$ g $中连接的设备上的参数进行平等估计。根据$ G $,我们可以为估计器提供一般结果,可以进一步校准以获得各种特定问题设置的收敛率。令人惊讶的是,我们的估计器在$ g $上的某些图保真度条件下达到了最佳率,就好像我们可以汇总所有共享相同分布的样本一样。如果未满足图形保真度条件,我们通过多次测试提出一个边缘选择过程,以确保最佳性。为了减轻本地计算的负担,提供了一个分散的随机版本的ADMM,收敛速率$ o(t^{ - 1} \ log t)$,其中$ t $表示迭代的数量。我们强调,我们的算法在每次迭代时仅沿$ g $的边缘传输参数,而无需保留隐私的中央机器。我们将其进一步扩展到在训练过程中随机无法接近设备的情况,并具有类似的算法收敛保证。模拟实验和2020年美国总统选举数据集证明了我们方法的计算和统计效率。
translated by 谷歌翻译
象征性语言生成是在所需的言语中重新设计给定文本的任务,同时仍然忠于原始上下文。我们通过为自动生成五种英语中的五种常见形式形式提供基准,迈出了迈向多位数语言建模的第一步。我们训练MFLAG采用一种在BART顶部预训练的多基因语言的方案,以及将目标象征性信息注入编码器的机制;这使得具有目标形式形式的文本从另一种比喻形式产生,而没有平行的形象构句。我们的方法表现优于所有强大的基线。我们还提供了一些定性分析和对不同语音数字之间关系的反思。
translated by 谷歌翻译
本文简要概述了我们提交给Sapien Maniskill Challenge 2021的无互动轨道的提交。我们的方法遵循端到端管道,主要由两个步骤组成:我们首先提取多个对象的点云特征;然后,我们采用这些功能来通过基于深层变压器的网络来预测机器人模拟器的动作分数。更特别的是,为未来的工作提供指导,以开放剥削学习操纵技能的途径,我们提出了一项经验研究,其中包括一袋技巧和流产的尝试。最后,我们的方法在排行榜上获得了有希望的排名。我们解决方案的所有代码均可在https://github.com/liu6666666/bigfish \ _codes上获得。
translated by 谷歌翻译